What is PlastiSpan® insulation?

PlastiSpan insulation is a moulded expanded polystyrene (EPS) insulation. EPS insulation is an air-filled, closed cell, rigid foam plastic insulation that has never contained a blowing such as CFC, HCFC or HFC that is intended to provide enhanced thermal resistance. **PlastiSpan** insulation is also available with a laminated film applied to both faces under the brand names **DuroFoam®, DuroSpan®, DuroSpan GPS** and **ENERGREEN®** insulation.

What are the key advantages of PlastiSpan insulation?
The closed cell structure of **PlastiSpan** insulation provides **constant thermal resistance**, is **dimensionally stable** and provides **excellent mechanical properties**.

What are some typical PlastiSpan insulation applications?

PlastiSpan insulation is used in above-grade or below-grade building application including:

- Roofs - both commercial and residential
- Above-grade walls - e.g. insulating sheathing or as a building system component for the **Insulspan® SIP** (Structural Insulating Panel) System or the Advantage ICF System® (insulating concrete form)
- Foundation wall insulation and drainage – i.e., interior or exterior below-grade wall
- Floor slab applications – above or below concrete slab
- Frost-protected shallow foundations.

Plasti-Fab Product Information Bulletins (PIBs) describing **PlastiSpan** insulation used for the above applications are available.

Plasti-Fab EPS products are also widely used in geotechnical engineering applications from structural lightweight fill material to compressible fill materials (see Plasti-Fab 1000 series of PIBs for additional information).

What are the applicable product standards for PlastiSpan insulation?
The two primary EPS insulation industry standards in North America are:

1. CAN/ULC-S701.1 (Formerly CAN/ULC-S701), **Standard for Thermal Insulation, Polystyrene, Boards** for Canadian product applications. **NOTE:** Requirements for EPS insulation as a component in EIFS are provided in CAN/ULC-S701.1, Annex A.
2. ASTM C578, **Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation**. Material properties for products manufactured to these standards are provided in Tables 1 to 4. Additional standards that use CAN/ULC-S701.1 and ASTM C578 material property requirements for EPS insulation as a component for specific building system applications are:
 2. CAN/ULC-S717.1, **Standard for Flat Wall Insulating Concrete Form (ICF) Units.**
 3. ASTM E2634, **Standard Specification for Flat Wall Insulating Concrete Form (ICF) Systems.**
Table 1 – Typical PlastiSpan Insulation Types per CAN/ULC-S701.1

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Units</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3 25</th>
<th>Type 3 40</th>
<th>Type 3 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>m²°C/W (ft²·°F/Btu)</td>
<td>0.65 (3.75)</td>
<td>0.70 (4.04)</td>
<td>0.74 (4.27)</td>
<td>0.75 (4.3)</td>
<td>0.75 (4.3)</td>
</tr>
<tr>
<td>Compressive Resistance</td>
<td>kPa (psi)</td>
<td>70 (10)</td>
<td>110 (16)</td>
<td>170 (25)</td>
<td>276 (40)</td>
<td>414 (60)</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>kPa (psi)</td>
<td>170 (25)</td>
<td>240 (35)</td>
<td>300 (44)</td>
<td>414 (60)</td>
<td>517 (75)</td>
</tr>
<tr>
<td>Water Vapour Permeance</td>
<td>ng/(Pa·s·m²) (Perms)</td>
<td>300 (5.0)</td>
<td>200 (3.5)</td>
<td>130 (2.25)</td>
<td>130 (2.25)</td>
<td>130 (2.25)</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>% By volume</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Dimensional Stability</td>
<td>% Linear Change</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Limiting Oxygen Index</td>
<td>%</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 2 below provides some additional materials properties to those in CAN/ULC-S701.1 for the typical PlastiSpan insulation types.

Table 2 - Additional Material Properties

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Units</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3 25</th>
<th>Type 3 40</th>
<th>Type 3 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Strength</td>
<td>kPa (psi)</td>
<td>83 (12)</td>
<td>125 (18)</td>
<td>165 (24)</td>
<td>210 (30)</td>
<td>260 (38)</td>
</tr>
<tr>
<td>Compressive Resistance</td>
<td>kPa (psi)</td>
<td>25 (3.6)</td>
<td>50 (7.3)</td>
<td>75 (10.9)</td>
<td>103 (15.0)</td>
<td>180 (26.1)</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

1. PlastiSpan insulation material properties are third party certified under a quality listing program with Intertek Testing Services NA and are evaluated for code compliance under Intertek Code Compliance Research Report CCCR-1072.
2. PlastiSpan 25 insulation compressive resistance exceeds minimum requirement for CAN/ULC-S701.1, Type 3.
3. PlastiSpan 40 and PlastiSpan 60 insulation exceed requirements for CAN/ULC-S701.1, Type 3.
4. Thermal resistance is measured at a mean temperature of 75 °F (24 °C).
5. WVP values quoted are maximum values for 25-mm thick samples with natural skins intact. Lower values will result for thicker materials.
6. The water absorption laboratory test method involves complete submersion under a head of water for 96 hours. The water absorption values above are applicable to specific end-use design requirements only to the extent that the end-use conditions are similar to test method requirements.
Table 3 - **PlastiSpan** Insulation Properties per ASTM C 578\(^7\)

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Units</th>
<th>Type XI</th>
<th>Type I</th>
<th>Type VIII</th>
<th>Type IX</th>
<th>Type XIV</th>
<th>Type XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Density</td>
<td>pcf</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
</tr>
<tr>
<td>Compressive Resistance</td>
<td>psi</td>
<td>5.0</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Minimum @10% deformation</td>
<td>(kPa)</td>
<td>(35)</td>
<td>(69)</td>
<td>(90)</td>
<td>(104)</td>
<td>(173)</td>
<td>(276)</td>
</tr>
<tr>
<td>Thermal Resistance*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum per inch (25.4 mm)</td>
<td>ft(^2)-hr-(^\circ)F/Btu</td>
<td>3.2</td>
<td>3.9</td>
<td>3.9</td>
<td>4.2</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Maximum</td>
<td>(°C \cdot m(^2)/W)</td>
<td>(0.56)</td>
<td>(0.69)</td>
<td>(0.69)</td>
<td>(0.74)</td>
<td>(0.77)</td>
<td>(0.77)</td>
</tr>
<tr>
<td>Water Vapor Permeance*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>Perm</td>
<td>5.0</td>
<td>5.0</td>
<td>3.5</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Minimum</td>
<td>(ng/Pa\cdot s\cdot m(^2))</td>
<td>(287)</td>
<td>(287)</td>
<td>(201)</td>
<td>(201)</td>
<td>(143)</td>
<td>(143)</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>psi</td>
<td>10.0</td>
<td>25.0</td>
<td>30.0</td>
<td>35.0</td>
<td>50.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>(kPa)</td>
<td>(70)</td>
<td>(173)</td>
<td>(208)</td>
<td>(240)</td>
<td>(345)</td>
<td>(414)</td>
</tr>
<tr>
<td>Dimensional Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>% linear change</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>ASTM D2126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Absorption(^10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>% by volume</td>
<td>4.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>ASTM C272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limiting Oxygen Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>volume %</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Minimum</td>
<td>ASTM D2863</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>pcf</td>
<td>0.70</td>
<td>0.90</td>
<td>1.15</td>
<td>1.35</td>
<td>1.80</td>
<td>2.40</td>
</tr>
<tr>
<td>Minimum</td>
<td>(kg/m(^3))</td>
<td>(12)</td>
<td>(15)</td>
<td>(18)</td>
<td>(22)</td>
<td>(29)</td>
<td>(38)</td>
</tr>
</tbody>
</table>

Table 4 below provides some additional material properties to those in ASTM C578 for the typical **PlastiSpan** insulation types.

Table 4 – Additional Material Properties

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Units</th>
<th>Type XI</th>
<th>Type I</th>
<th>Type VIII</th>
<th>Type IX</th>
<th>Type XIV</th>
<th>Type XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Strength</td>
<td>kPa</td>
<td>35</td>
<td>85</td>
<td>94</td>
<td>108</td>
<td>125</td>
<td>165</td>
</tr>
<tr>
<td>Minimum</td>
<td>(psi)</td>
<td>(5.0)</td>
<td>(12.0)</td>
<td>(15.0)</td>
<td>(18.0)</td>
<td>(24.0)</td>
<td>(30.0)</td>
</tr>
<tr>
<td>Compressive</td>
<td>kPa</td>
<td>15</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>103</td>
</tr>
<tr>
<td>Resistance</td>
<td>(psi)</td>
<td>(2.2)</td>
<td>(3.6)</td>
<td>(5.8)</td>
<td>(7.3)</td>
<td>(9.4)</td>
<td>(15)</td>
</tr>
<tr>
<td>Minimum @1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive</td>
<td>kPa</td>
<td>15</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>103</td>
</tr>
<tr>
<td>Resistance</td>
<td>(psi)</td>
<td>(2.2)</td>
<td>(3.6)</td>
<td>(5.8)</td>
<td>(7.3)</td>
<td>(9.4)</td>
<td>(15)</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>NA</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

7. **PlastiSpan** insulation material properties per ASTM C578 are third party certified and labelled under a quality listing program administered by Intertek Testing Services NA and are evaluated for code compliance under Intertek Code Compliance Research Report CCR-1072.
8. Thermal resistance is measured at a mean temperature of 75 \(^\circ\)F (24 \(^\circ\)C).
9. Maximum values for 1.0 inch (25.4-mm) thick samples with natural skins intact. Lower values will result for thicker materials. Where water vapour permeance is a design issue, consult Plasti-Fab Sales representative for additional information.
10. ASTM Test Method C272 water absorption requires 24 hours submersion of specimen under water. The water absorption values above are applicable to specific end-use design requirements only to the extent that the end-use conditions are similar to requirements stated in the test method.
What performance characteristics need to be considered for insulation applications?
The test methods used to determine material properties in the above tables provide a means of comparing different types of cellular plastic thermal insulation. They are intended for use in specifications, product evaluations and quality control. However, the material properties in product standards alone may not provide complete answers with regard to required product performance in end-use insulation applications. This product information bulletin provides additional guidance in using material properties specified to assess suitability for end-use applications.

Based upon the insulation application requirements, performance characteristics that may be considered include:

- Thermal resistance
- Compressive resistance
- Flexural strength
- Moisture resistance
- Water vapour permeance
- Freeze-thaw performance
- Drainage capabilities
- Resistance to vermin attacks
- Protection from ultraviolet light
- Chemical resistance

This bulletin provides a brief discussion on each of the above properties. In addition, Plasti-Fab has developed a series of Product Information Bulletins to provide designers and specification writers with additional assistance in selecting the appropriate insulation type for specific end-use applications.

Thermal Resistance/Thickness Relationship
Thermal resistance for insulation material North American product standards is stated as RSI (SI System) or R-value (inch-pound units). The RSI/R-value of insulation is a relative measure of the ability of the material to resist heat flow, with a higher RSI/R-value indicating a greater resistance to heat flow.

The major mechanism of heat transfer in foam plastic insulation is by conduction. Heat transfer by conduction occurs through both the gas and solid portions of the foam. Since gases occupy approximately 90 to 98 percent by volume of cellular plastics, conduction through the gas portion of the foam is by far the most significant.¹¹

Canadian foam plastic insulation standards provide a minimum RSI per 25 mm of thickness measured at a mean temperature of 24 ºC. US specifications provide a minimum R-value/RSI per inch (25.4 mm) of thickness measured at a mean temperature of 75 ºF (24 ºC).

The thermal resistance of PlastiSpan insulation is closely related to the density of the finished product. Within the normal range of insulation densities, as the density increases, the thermal resistance values also increase.

Long-Term Thermal Resistance (LTTR) properties of foam plastic insulation
Some cellular foam plastic insulations depend upon blowing agents such as HFCs or HCFCs inside their cellular structure to increase the RSI/R-value. However, since the foam plastic insulation is not enclosed within a gas impermeable barrier, the blowing agent in the cellular structure diffuses out over time and is replaced by air, which has a lower thermal resistance value. This phenomenon is known as thermal aging. To address this characteristic, designers must be provided design RSI/R-value based upon long-term thermal resistance (LTTR) testing.

The North American foam plastic insulation industry has developed test methods for predicting the LLTR of foam plastic insulation. Reporting of LTT values is a requirement in National Standards of Canada for foam plastic insulation. CAN/ULC-S77012 is the National Standard of Canada recognized as the test method for predicting the LTTR of closed-cell foam plastic insulation containing a gas other than air. Similarly, ASTM C130313 has been developed for use in ASTM foam plastic insulation specifications; however, ASTM C1303 has not yet been widely adopted and ASTM specifications do not include minimum LTTR values. Both test methods provide a means for predicting LTTR for foam plastic insulation with a captive blowing agent based upon an accelerated laboratory test.

LTTR properties of PlastiSpan insulation
The closed cellular structure of PlastiSpan insulation contains only stabilized air; therefore, the RSI/R-value of PlastiSpan insulation does not decrease with age. Reported RSI/R-values are determined by direct testing using ASTM C51814 or ASTM C177.15 In other words, published RSI/R-values are design values and do not require any adjustments for aging over the life of the structure. See Plasti-Fab Product Information Bulletin Nos. 241 and 314 for additional information on LTTR requirements.

Compressive resistance of EPS insulation
Compressive resistance is determined using ASTM Test Methods C16516 or D1621.17 The value included in material standards and specifications for cellular plastics, including PlastiSpan insulation, is the compressive stress at 10\% strain (deformation from original thickness). This value is not a failure strength, but rather is intended for product evaluations and quality control, as well as for comparing relative compressibility of different cellular plastics. The compressive resistance of PlastiSpan insulation is closely related to product density.

The compressive resistance at 10\% deformation should not be used for design purposes when a cellular plastic is to be subjected to short or long term compressive loads. If compressive loads are anticipated, either short or long term, the compressive resistance at 1\% deformation provided in Tables 2 and 4 should be used for design purposes for the insulation types identified in these tables.

Flexural strength of EPS insulation
Flexural strength provides a relative measure of resistance to bending. It is measured using ASTM C203, Procedure B.18 It may be important when considering the handling characteristics of the product, as well as the ability to resist point loads. The values given in material standards are not intended for design purposes as they are breaking strengths.

12 CAN/ULC-S770, *Determination of Long-Term Thermal Resistance of Closed-Cell Thermal Insulating Foams*, Underwriters Laboratories of Canada.

18 ASTM C203, *Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation*, ASTM International.
Moisture resistance characteristics per laboratory test methods

PlastiSpan insulation is a closed cell foam plastic insulation and as such resists the absorption of moisture into the cellular structure. Foam plastic insulation standards specify maximum water absorption (% by volume) obtained from laboratory test method.

Maximum water absorption specified in CAN/ULC-S701.1 is determined using ASTM D 2842\(^{19}\) which states the following under section 2, "**Significance and Use**":

> The purpose of this test is to provide a means for comparing relative water absorption tendencies between different cellular plastics. It is intended for use in specifications, product evaluations, and quality control. **It is applicable to specific end-use design requirements only to the extent that the end-use conditions are similar to the immersion period (normally 96 h) and 5.1 cm. (2 in.) head requirements of the test method.** (Bold print added for clarity.)

The above note from ASTM D 2842 is also included as a note in CAN/ULC-S701.1.

Maximum water absorption values specified in ASTM C578 are determined using ASTM C272\(^{20}\). ASTM C578, Appendix Clause X1.4 contains a similar note that states water absorption characteristics may have significance when the end-use of the material requires exposure to water for extended periods of time.

Moisture resistance of EPS insulation in actual applications

There are now a number of published reports demonstrating that moisture resistance of EPS insulation in actual applications exposed over extended periods of time is much better than indicated by water absorption laboratory test methods. Below are a few examples:

1. The results of an NRC/CPIA study of EPS insulation installed below grade for 2 years confirmed water absorption less than 0.7% by volume (see PIB 209 for additional information).
2. A Finnish study\(^{21}\) comparing results from laboratory water absorption test methods to values from field applications found actual that actual water absorption in below grade applications was less than half that predicted by Laboratory test values.
3. Published report from Norway\(^{22}\) for EPS lightweight fill material samples retrieved from applications after up 30 years in service in a drained position found moisture contents less than 1% by volume.
4. Plasti-Fab Product Information Bulletin No. 268 provides test results for ASTM C578, Type I EPS insulation and Type X extruded polystyrene (XPS) insulation installed side-by-side on a below-grade foundation application. The bulletin highlights test results from an independent, third-party test laboratory\(^{23}\) for each insulation type removed after 15 years of service from the exterior of a commercial building in St. Paul, MN at a depth of approximately 6 feet below grade.

Equilibrium moisture content (EMC)

Equilibrium moisture content (EMC) is the moisture content of a material at which the material is neither gaining nor losing moisture when exposed to a specific relative humidity and temperature. Although it is a dynamic equilibrium, after the moisture content of EPS insulation

has attained its equilibrium value under given conditions, EMC changes that take place as conditions change would not exceed 0.15% of the mass of the material. This EPS insulation material property is another reason why actual moisture absorption measured from field applications differs greatly from results obtained in laboratory tests that expose test specimens to conditions that are not experienced in actual intended product applications.

Drying Potential of EPS insulation

Moisture intrusion into insulation used in below grade applications is sometimes unavoidable. For this reason, it is important to evaluate the drying potential of an insulation material when exposed to long term environmental conditions as well as their ability to resist moisture intrusion.

The drying potential of thermal insulation is critical to ensuring thermal resistance (RSI/R-value) is maintained even after exposure to severe long-term exposure conditions since changes in moisture content will impact their thermal performance. Plasti-Fab Product Information Bulletin No. 297 provides information on drying potential for EPS insulation after exposure to the environmental cycling described in ASTM C1512.²⁴

Water Vapour Permeance of EPS insulation

The ability of a material to resist water vapour movement through it depends upon its water vapour permeability. Water vapour permeability characteristics of rigid cellular plastic insulation are determined using ASTM Test Method E 96. Maximum water vapour permeability values can be varied with thickness. Values for various types of PlastiSpan insulation given in the tables of material properties in this Product Information Bulletin are for a product thickness as noted – i.e., Table 1 @ 25-mm thickness and Table 3 @ 1-inch thickness.

Water vapour transmission through a material is the passage of water through the material in the vapour phase. Capillary movement of moisture is eliminated in closed cellular plastic insulation such as PlastiSpan insulation; therefore, redistribution of moisture occurs through vaporization and condensation mechanisms as a result of the prevailing thermal gradient. Most moisture gain in field applications is restricted to either the surface cells or as water vapour in the interstitial spaces, rather than absorbed moisture.

The following points should be noted regarding water vapour permeability in relation to EPS insulation performance in the building system:

1. Water vapour pressure rises significantly as temperature rises.
2. A significant vapour drive (i.e. temperature/pressure differential) is required in order to induce a significant water vapour movement for the typical range of water vapour permeability values provided by PlastiSpan insulation.
3. The water vapour movement that could be expected at moderate temperature differentials encountered in below-grade applications would be minimal - e.g. vapour pressure differential for 22 °C inside and 5 °C outside = 1772 Pa.
4. A University of Minnesota Underground Space Centre 1986 study of existing research related to foam plastic used in below grade applications offered the following comment on water vapour pressure differentials encountered in below-grade applications: Building/ground vapour pressure differentials should seldom exceed 0.30" Hg (1015 Pa vapour pressure) outwards and 0.50" Hg (1690 Pa vapour pressure) inwards. Laboratory test results at this level of vapour differential did not result in a significant absorption of moisture.

Water vapour permeance of EPS insulation with laminated facers

Maximum vapour permeance value for EPS insulation typically varies per unit of thickness. The vapour permeance value for DuroFoam, DuroSpan and ENERGREEN insulation is significantly lower as a result of the laminated films. Where water vapour permeance is a design issue, contact Plasti-Fab technical services for additional information.

Resistance to freeze-thaw action

One laboratory test method that has been used in the past by some foam plastic insulation manufacturers as a freeze-thaw durability test procedure is a modified version of ASTM C 666, *Test Method for Resistance of Concrete to Rapid Freezing and Thawing*. This procedure has been used to subject insulation samples to up to 600 cycles of full-thickness freezing in air and thawing by complete submersion in water. The test procedure does not correlate to conditions encountered with typical applications for an insulation material. The question becomes how many cycles of an inappropriate test procedure are required to create a “failure” of the product, rather than how an insulation product will perform in an application.

In reviewing performance of foam plastics in below-grade applications, the University of Minnesota Underground Space Centre concluded that:

1. Freeze-thaw testing involving hundreds of full-thickness freeze-thaw cycles of a fully or partially submerged insulation is poorly related to the expected performance of insulation for below-grade applications over a reasonable economic life for a building.
2. The impact of freeze-thaw cycling in a drained, below-grade building foundation application should not be large since the annual number of freeze-thaw cycles is small below grade, and little of the insulation thickness will experience sub-freezing temperatures.

The performance of EPS insulation in a below-grade application was further demonstrated as part of a joint NRC/CPIA research project. In this project, EPS insulation was installed as exterior foundation insulation for a period of two years. The in situ thermal performance of the insulation was continuously monitored over the period and found to be constant. In addition, the mechanical properties of samples of the material tested after removal from the application were unchanged.25, 26

A second part of the NRC/CPIA research project included development of a laboratory durability test protocol that subjected test material to extreme thermal gradient and environmental cycling, including freeze-thaw cycling.27 Laboratory testing performed by NRC on samples from the same manufacturing lot of material subjected to the 30-month field exposure confirmed that all types of EPS insulation retained their specified material properties even after being subjected to the laboratory durability test protocol. The test protocol was subsequently developed into an ASTM standard test method to provide a means of assessing durability performance of all types of insulation.

EPS insulation drainage properties in below-grade applications
When used as below-grade foundation insulation, the surface of PlastiSpan insulation will act as a capillary-breaking layer. The surface of the insulation resists movement of water into the insulation and provides a drainage plane. If adequate provision for drainage is provided at the base of the wall, water will drain to the base of the wall. Plasti-Fab GeoDrain® foundation insulation board is a proprietary product designed specifically as a drainage product.

Effect of sunlight (ultraviolet light) on EPS insulation
Ultraviolet light (sunlight) will cause surface degradation on all types of cellular plastic insulation, including PlastiSpan insulation. If the product is to be stored outside for extended periods of time (more than 3 or 4 days in a bright summer sun), it should be covered with a tarpaulin or opaque light-coloured polyethylene film.

Insulation subject to attack by insects, parasites or animal and plant life
PlastiSpan insulation does not provide any nutritive food value and will not attract insects, parasites or animal and plant life. However, care should be taken to minimize possible exposure to carpenter ants and termites as these wood-boring insects are known to use any insulation material, with the exception of foam glass, as a nesting or tunneling medium.

Plasti-Fab Product Information Bulletin 243 provides additional recommendations measures to control pest infestations.

Chemical Resistance
Plasti-Fab Technical Bulletin 115-01 provides information regarding PlastiSpan insulation chemical resistance.

Industry Acceptance
Since 1951, EPS insulation has been one of the most widely used thermal insulations in the world and is a key component in a number of energy-efficient building systems. Its versatility and high RSI/R-value per dollar make EPS insulation the preferred product of architects, specifiers and application contractors.

Buy with confidence
The industry provides a voluntary, third-party quality assurance program to help participating manufacturers control product quality and monitor compliance. All Plasti-Fab EPS insulation products are manufactured in facilities under a third party certification program maintained with Intertek Testing Services NA. Consumers, architects, specifiers, building owners, home builders, roofers and insulation contractors can benefit from this nation-wide program by specifying the purchase of labeled products.

CCMC Evaluation Listings
Canadian Construction Materials Centre (CCMC) evaluation listings 12424-L, 12425-L and 12426-L address PlastiSpan insulation, DuroFoam Insulation and ENERGREEN insulation material property requirements per CAN/ULC-S701, types 1, 2 and 3 as well as compliance with the National Building Code of Canada. See Plasti-Fab Product Information Bulletins 267, 295 and 296 for more information on these code evaluation listings.

ICC-ES Evaluation Report
ICC-ES ESR-1587 addresses PlastiSpan insulation material property requirements per ASTM C578, Types I, VIII, II and IX as well as compliance with the requirements of the International
Building Code (IBC) and the International Residential Code (IRC). See Plasti-Fab Product Information Bulletin 269 for more information on this code evaluation report.

Intertek Code Compliance Research Reports

CCCR-1072 addresses *PlastiSpan* insulation, *DuroFoam* Insulation, *DuroSpan* insulation and *ENERGREEN* insulation material property requirements per ASTM C578 and CAN/ULC-S701 as well as compliance with the requirements of the IBC and IRC for United States applications and National Building Code of Canada (NBCC) for Canadian applications. See Plasti-Fab Product Information Bulletin 346 for more information on this code evaluation report.

GREENGUARD Gold Certification Listings

As part of its commitment to quality and ongoing sustainability initiatives, Plasti-Fab has recently received GREENGUARD Gold Certification for its expanded polystyrene (EPS) insulation products. The certification includes PlastiSpan®, DuroSpan™, DuroFoam®, EnerSpan® and ENERGREEN® insulation, as well as the Advantage ICF System®.

The certification has been developed with UL Environment, an independent global safety science organization using their process and procedures in accordance with established environment and safety standards. See Plasti-Fab Product Information Bulletin 266 for more information on this product certification. Plasti-Fab GREENGUARD listings can be found at: https://spot.ulprospector.com/en/na/BuiltEnvironment.

Research and Development

Providing a material to the market is one thing, but sustaining it as a market leader over a number of decades and assuring its lasting effectiveness is another. Plasti-Fab has provided customers with innovative expanded polystyrene (EPS) product solutions for fifty years. Below is a brief introduction to two additional products that Plasti-Fab has introduced to the construction market.

1. **EnerSpan®** insulation is rigid, closed cell insulation with a silver-gray color that meets or exceeds requirements for expanded polystyrene (EPS) insulation manufactured to ASTM C578 and CAN/ULC-S701.1. **EnerSpan** insulation is manufactured using Neopor® F5300 Plus, a graphite-enhanced expandable polystyrene (GPS) resin provided by BASF that reduces radiation heat transfer and results in an enhanced thermal resistance compared to white EPS insulation. See Plasti-Fab Product Information Bulletins 302 and 304 for EnerSpan insulation material property data. CCCR-1033 addresses compliance with the requirements of the IBC and IRC for United States applications and NBCC for Canadian applications. See Plasti-Fab Product Information Bulletin 312 for more information on this code evaluation report.

2. **Radon Guard** insulation is a patent-pending sub-slab depressurization panel. The interconnected channels on the underside of the panel direct soil gas movement between the ground and the air barrier system to a vent pipe in slab on ground applications as required by National Building Code of Canada 2010, Section 9.13.4. The vent pipe is required to connect to a radon gas mitigation system as per applicable code. CCMC Evaluation Report 13698-R confirms that Radon Guard Insulation is a code compliant replacement for a 100 mm thick layer of clean granular fill material as required by code. See Plasti-Fab Product Information Bulletin 294 for more information on this product.

Recognized as experts in the design and manufacture of EPS products for a wide variety of applications, we provide our customers with professional assistance to select the right EPS product solution for their application.