

The Advantage ICF System[®] Technical Manual

The Advantage ICF System®

Recommendation: Review the Advantage ICF System Installation Videos.

When building with the Advantage ICF System please review your local building code requirements with your local building officials before your permitting stage.

Notes:

INTRODUCTION

This manual is designed to inform general contractors, installers, engineers and architects of the reinforcement required in structures that are built with the patented Advantage ICF System[®]. Data is provided for both the 150 mm (6") wall system and the 200 mm (8") wall system.

The Advantage ICF System is an insulating concrete forming system consisting of two panels of expanded polystyrene (EPS) insulation connected with web connectors moulded into the EPS panel. The EPS panels have a preformed interlocking mechanism along their top and bottom edges to ensure web connectors align vertically for attachment of interior and exterior finish materials.

When reinforcement and concrete are placed in the Advantage ICF system, an insulated, monolithic concrete wall of uniform thickness is formed. The result is a strong, energy efficient wall that will provide long-term energy cost savings and add resale value to the building.

Concrete Reinforcement Design

Engineering analysis within this manual was prepared based upon requirements within Parts 4 and 9 of the National Building Code of Canada 2005 and requirements within the publication PCA 100-2007, *Prescriptive Design of Exterior Concrete Walls for One- and Two-family Dwellings (Pub. No. EB560)* published by the Portland Cement Association. The tables in this manual provide steel reinforcement in a number of different wall and lintel applications based upon the structural loads as detailed and design assumptions as indicated below each table.

Those who feel comfortable reading the tables and interpreting the technical drawings contained in this manual may not need to consult a structural engineer. **Note however, that site-specific design and engineering is always the sole responsibility of the contractor or installer.**

When the Advantage ICF System is used in structural applications outside the scope of the design analysis provided in this manual or the applicable building code, a registered professional engineer skilled in concrete design must certify the design analysis and the design drawings for such application to provide a level of performance equivalent to requirements as noted above.

It is recommended that this manual is used in combination with the Advantage ICF System Installation Manual, which describes how to assemble the product. This manual contains the following information:

- 1. A list of design assumptions applied to the reinforcement design tables and drawings that follow. If your building deviates from any of these assumptions, you should consult a structural design engineer.
- 2. Tables containing data that specify steel reinforcement requirements.
- 3. Wall section and detail drawings that illustrate a variety of common construction details.

Last Revision: September 30, 2011 Replaces: December 23, 2010

TABLE OF CONTENTS

INTRODUCTION	1
TABLE OF CONTENTS	3
ADVANTAGE ICF SYSTEM DESCRIPTION	5
Figure 1 - Advantage ICF System Blocks	5
ADVANTAGE ICF SYSTEM PRODUCT SPECIFICATIONS	6
Design Assumptions Table 1 - Load Combinations	7 8
DESIGN TABLES	10
Table 2 – Ledger Size and Bolt Spacing for Floors and Decks Table 3 – Soil Classifications	10 11
REINFORCING STEEL TABLES FOR 150-MM (6") ADVANTAGE ICF SYSTEM	12
Table 4 – Recommended US Rebar Size Substitution for Designated SI Rebar SizesTable 5 – 150 mm (6") Below Grade Laterally Restrained Walls in All Seismic ZonesTable 6 – 150 mm (6") Above Grade Walls (with Brick Veneer), Sa (0.2) ≤ 1.2Figure 2 –Typical Lintel Reinforcement LayoutTable 7a – 210 mm (8 ¼") Deep Lintels – Reinforcement in All Seismic ZonesTable 7b – 419 mm (16 ½") Deep Lintels – Reinforcement in All Seismic ZonesTable 7c – 629 mm (24 ¾") Deep Lintels – Reinforcement in All Seismic Zones	12 13 14 15 16 17 18
REINFORCING STEEL TABLES FOR 200-MM (8") ADVANTAGE ICF SYSTEM	19
Table 8 - Recommended US Rebar Size Substitution for Designated SI Rebar SizesTable 9 - 200 mm (8") Below Grade Laterally Restrained Walls in All Seismic ZonesTable 10 - 200 mm (8") Above Grade Walls (with Brick Veneer), Sa (0.2) \leq 1.2Figure 3 - Typical Lintel Reinforcement LayoutTable 11a - 210 mm (8 ¼") Deep Lintels - Reinforcement in All Seismic ZonesTable 11b - 419 mm (16 ½") Deep Lintels - Reinforcement in All Seismic ZonesTable 11c - 629 mm (24 ¾") Deep Lintels - Reinforcement in All Seismic Zones	19 20 21 22 23 24 25
MINIMUM SOLID WALL LENGTH FOR ADVANTAGE ICF SYSTEM	26
Table 12a – Minimum Solid Wall Length (m) for Wind Pressure $q(1/50) = 0.4$ kPaTable 12b – Minimum Solid Wall Length (m) for Wind Pressure $q(1/50) = 0.6$ kPaTable 12c – Minimum Solid Wall Length (m) for Wind Pressure $q(1/50) = 0.8$ kPaTable 12d – Minimum Solid Wall Length (m) for Wind Pressure $q(1/50) = 1.0$ kPaTable 12e – Minimum Solid Wall Length (m) for Wind Pressure $q(1/50) = 1.2$ kPaTable 12e – Minimum Solid Wall Length (m) for Wind Pressure $q(1/50) = 1.2$ kPaTable 13a – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.4$ Table 13b – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.6$ Table 13c – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.8$ Table 13d – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.8$ Table 13d – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.8$ Table 13d – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.8$	26 27 27 27 28 29 29 29 30
Table 13e – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 1.0$	31

Last Revision: September 30, 2011 Replaces: December 23, 2010

ADVANTAGE ICF SYSTEM DESCRIPTION

The Advantage ICF System[®] is designed as a monolithic flat insulating concrete form (ICF) system (Figure 1). One block comprises two corresponding panels made from expanded polystyrene (EPS). The panels function as the form and are held together with high-density plastic webs (or ties) spaced 200 mm (8") on centre for the 150 mm (6") concrete wall form or 150 mm (6") on centre for the 200 mm (8") concrete wall form. Once a series of blocks have been assembled to form a wall with the appropriate steel reinforcement, concrete is poured inside the blocks to create a uniform structural wall system. With the application of appropriate interior and exterior wall finishes, the resulting structural concrete wall has exceptional fire, sound, and insulating characteristics.

The outside dimensions of an Advantage ICF System 150 mm (6") standard block are 419 mm (16 $\frac{1}{2}$ ") high, 286 mm (11 $\frac{1}{4}$ ") wide and 1219 mm (48") long. The outside dimensions of an Advantage ICF System 200 mm (8") standard block are 419 mm (16 $\frac{1}{2}$ ") high, 336 mm (13 $\frac{1}{4}$ ") wide and 1219 mm (48") long.

Typical dimensions for Advantage ICF System blocks are provided on next page. If you are reading this document at the planning stage of your project, you should factor block dimensions into your plans if you want to save time on construction.

Figure 1 - Advantage ICF System Blocks

Product	Feature	150 mm Metric	6" Imperial	200 mm Metric	8" Imperial
Standard Block	Helght:	419	16-1/2 ["]	419	16-1/2 [°]
	Width:	286	11-1/4	337	13-1/4 [°]
	Length:	1219	48 ^{°°}	1219	48 ^{°°}
Corner Block	Helght:	419	16-1/2 ["]	419	16-1/2 [°]
	Width:	286	11-1/4 ["]	337	13-1/4 [°]
	Length:	813 x 406	32 ^{°°} x 16 ^{°°}	737 x 432	29 [°] x 17 [°]
7-1/2 [°] Height Adjuster	Helght: Width: Length:	191 286 1219	7-1/2 [°] 11-1/4 ^{°°} 48 ^{°°}	191 337 1219	7-1/2 ^{°°} 13-1/4 ^{°°} 48 ^{°°}
Taper Top Block	Helght:	419	16-1/2 ["]	419	16-1/2 [°]
	Width:	286	11-1/4 ["]	337	13-1/4 [°]
	Length:	1219	48 [°]	1219	48 [°]
	Bearing at Top:	249	9-3/4 [°]	292	11-1/2 [°]
45° Corner Block	Helght:	419	16-1/2 ["]	419	16-1/2 [°]
	Width:	286	11-1/4 ["]	337	13-1/4 [°]
	Length:	645 x 241	25-3/8 [°] x 9-1/2 [°]	540 x 236	21-1/4 ^{°°} x 9-1/4 ^{°°}
Brick Ledge	Helght:	419	16-1/2 ^{°°}	419	16-1/2 [°]
	Width at Top	400	15-3/4 ^{°°}	451	17-3/4 [°]
	Width at Bottom:	286	11-1/4 ^{°°}	337	13-1/4 [°]
	Length:	1219	48 ^{°°}	1219	48 [°]

ADVANTAGE ICF SYSTEM PRODUCT SPECIFICATIONS

ENGINEERING ANALYSIS

This engineering analysis has been prepared for above and below grade reinforced concrete walls formed using the Advantage ICF System.

Design Assumptions

The following design assumptions define the parameters used to determine the reinforcement stated in the tables and drawings in this manual.

Below Grade Wall Heights

- 2440 mm (8 ft)
- 3048 mm (10 ft)
- 3660 mm (12 ft)

Backfill Height Below Grade

The height of backfill used to cover below grade laterally restrained walls is assumed to be as follows:

- 2440 mm (8 ft) wall: 1220 mm (4 ft) to 2130 mm (7 ft)
- 3048 mm (10ft) wall: 1220 mm (4 ft) to 2740 mm (9 ft)
- 3660 mm (12 ft) wall: 1220 mm (4 ft) to 3350 mm (11ft)

Above Grade Wall Height

Reinforcement requirements for three above grade wall heights are provided in this manual:

- 2440 mm (8 ft)
- 3048 mm (10 ft)
- 3660 mm (12 ft)

Clear Spans

Walls are designed for the following maximum clear spans:

- Floor: 6.1 m (20 ft)
- Roof: 12.2 m (40 ft)

Wall Thickness

Thickness of the concrete inside the Advantage ICF System is assumed to be either 150 mm (6") or 200 mm (8").

Maximum Building Dimensions

- Maximum building length: 24.4 m (80 ft)
- Maximum building width: 12.2 m (40 ft)

Restraint Conditions

The following restraint conditions are assumed:

- Walls are laterally restrained at the top unless otherwise noted.
- Laterally restrained walls are considered pinned top and bottom.
- Lateral restraint is provided at each floor by diaphragm action.

Eccentricity

• Floor load on above grade walls has an eccentricity of 140 mm (5 5/8") for the 150 mm (6") wall system and of 170 mm (6 5/8") for the 200 mm (8") wall system.

• Below grade walls are assumed to support a brick veneer of maximum 7320 mm (24 ft) high with an eccentricity of 220 mm (8 5/8") for the 150 mm (6") wall system and of 245 mm (9 5/8") for the 200 mm (8") wall system. The eccentricity of floor load is not considered for below grade walls as it is counteracting the earth pressure of backfill.

Design Loads

The following floor, roof, wall, wind and seismic loads have been used:

- Floor dead load: 0.72 kPa (15 psf)
- Floor live load: 1.92 kPa (40 psf)
- Roof dead load: 0.72 kPa (15 psf)
- Roof snow load: 4.44 kPa (90 psf)
- Passenger vehicle surcharge: 2.4 kPa (50 psf)
- Wall dead load:
 4.12 kPa (85 psf) for the 150 mm (6") wall system including interior and exterior finish
 5.29 kPa (110 psf) for the 200 mm (8") wall system including interior and exterior finish
 0.72 kPa (15 psf) for wood frame wall
 1.87 kPa (39 psf) for brick veneer
- Maximum wind pressure: q (1/50) = 1.2 kPa (25 psf)
- Seismic load for above grade walls: $S_a(0.2) \le 1.2$

Casa	Load Combination							
Case	Principal Loads	Companion Loads						
1	1.4D							
2	(1.25D or 0.9D) + 1.5L	0.5S or 0.4W						
3	(1.25D or 0.9D) + 1.5S	0.5L or 0.4W						
4	(1.25D or 0.9D) + 1.4W	0.5L or 0.5S						
5	1.0D + 1.0E	0.5L + 0.25S						

Table 1 - Load Combinations

Deflection Limits

Deflection limits are as follows:

- Length of span divided by 360 for live load
- Length of span divided by 240 for total load

Soils, Footings and Foundation Pressures

Design lateral soil loads are per m (ft) of backfill height for moist soil conditions without hydrostatic pressure. Wall reinforcement requirements in Tables 4 and 7 are grouped into the following three categories:

- 1. Walls with soil backfill having a maximum design lateral soil load of 480 kg/m³ (30 pcf);
- 2. Walls with soil backfill having a maximum design lateral soil load of 720 kg/m³ (45 pcf); and

3. Walls with soil backfill having a maximum design lateral soil load of 960 kg/m³ (60 pcf).

It is also assumed that the sub-floor or adequate bracing has been installed prior to backfilling in order to allow walls to resist the lateral pressure from the backfill.

For seismic design, the footing soil is assumed to be a dense soil or soft rock. Note that a site inspection should be performed at all building locations to confirm that the soil has adequate bearing capacity.

Material Properties

Concrete

The following conditions with regard to concrete usage are assumed:

- Concrete compressive strength 20 MPa (3,000 psi) at 28 days, Type 10 with 20 mm (0.75") aggregate
- Concrete slump: 100 to 150 mm (4" to 6")
- Concrete wall thickness: 150 mm (6") or 200 mm (8")
- Concrete Air entrainment: minimum 4 to 7 percent where exposed to freeze/thaw cycles
- Concrete pour rate: 1220 mm (4 ft) /hr
- Internal vibration with a 25 mm (1") mechanical vibrator

Reinforcing Steel

The following conditions with regard to reinforcing steel (rebar) are assumed:

- Design as per CAN/CSA-A23.3-04
- Reinforcement steel as per CAN/CSA-A23.1-04 and CAN/CSA-G30.18
- Rebar strength (10M, 15M and 20M): 400 MPa (60,000 psi)
- Vertical reinforcing bars are secured in position a minimum of 38 mm (1.5") from the tension face of concrete for below grade walls or in the middle third of wall section for above grade walls.
- Horizontal reinforcing bars are secured in position a minimum of 28 mm (1.125") from the tension face of concrete for below grade walls or in the middle third of wall section for above grade walls.
- Distance from the edge of the wall to the primary reinforcement for exterior walls is 50 mm (2") for reinforcement steel 20M or greater, and 40 mm (1 ½") for reinforcement steel 15M or smaller.
- Corner bars are provided for all wall intersections.
- All horizontal and vertical rebar lap lengths are as per NBC 2005, Clause 9.3.1.1.(4)(b)(iii), lapped a minimum of 450mm (18") for 10M bars and 650mm (26") for 15M bars.

Other Construction Materials

The following specifications apply to other materials used in addition to those described above:

- All dimensional lumber is SPF No. 2 or better.
- A structural engineer is to design any steel beams.
- A structural engineer is to review shop drawings for engineered wood product floors, roofs and pre-engineered truss systems.
- All anchor bolts are 200 mm (8") long "L" shaped ½" diameter ASTM A36 or A307 unless noted otherwise.

Openings

- For below grade walls when considered to be laterally supported at top, it is assumed that
 - Openings are less than 1220 mm (4') in width and the total openings in the wall are less than 25% of the wall area.
 - When the length of solid wall between windows is less than the average length of the windows, the wall is considered unsupported and additional engineering is required.
- For above grade walls
 - For exterior non-load bearing walls, no openings shall occur within 1200 mm of interior and exterior corners. The cumulative width of openings in non-load bearing walls shall

not make up more than 70% of the wall length. Openings shall be reinforced on all four sides with two 10M bars, extending 600 mm beyond the edges of the openings.

For load-bearing walls, lintels shall be provided over all openings wider than 900 mm. See lintel reinforcement tables for additional information.

Angle Iron Brick ledges

- It is assumed to be 89 mm (3 ½") by 89 mm (3 ½") by 6 mm (¼") angle iron anchored with 12 mm (½") diameter anchor bolts at 610 mm (24") on centre for a brick veneer of maximum 7320 mm (24 ft) high.
- Anchor bolt minimum length needs to extend to centre line of wall.
- Minimum anchor bolt cut-outs to be 100 mm (4") wide and 200 mm (8") high.

Advantage Brick Ledge Blocks

- Advantage brick ledge requires 10M stirrups at 203 mm (8") on centre.
- Maximum 7320 mm (24 ft) continuous height of brick veneer.
- A local engineer should be retained when loads or spans exceed what is used in the manual.

Lintels

The following with regard to lintels is assumed:

- 15M and larger bottom reinforcement steel and 10M stirrups have yield strength of 400 MPa (60,000 psi).
- Concrete compressive strength 20 MPa (3,000 psi).
- Support a uniformly distributed load including live and dead loads.
- An engineer is to review point loads from beams, girder trusses or other sources.
- Lintels are laterally supported at top.

DESIGN TABLES

The purpose of the design tables contained in this document is to enable users to determine rebar reinforcement requirements based on the design loads stated. Please note that all dimensions in the tables have been rounded for practical purposes.

Material	Clear	Span	Bolt Spacing		
2 x 12 (SPF No.2 or better)	4.57m	15'	12.7 mm x 152 mm @ 300 mm o/c (½" x 6" @ 12" o/c)		
2 x 12 (SPF No.2 or better)	6.10m	20'	12.7 mm x 152 mm @ 200 mm o/c (½" x 6" @ 8" o/c)		
Timber Strand 1.5E 45 mm x 242 mm (1 3/4" x 9 ¼")	4.57m	15'	12.7 mm x 152 mm @ 330 mm o/c (½" x 6" @ 13" o/c)		
Timber Strand 1.5E 45 mm x 242 mm (1 3/4" x 9 ¼")	6.10m	20'	12.7 mm x 152 mm @ 250 mm o/c (½" x 6" @ 10" o/c)		

Table 2 – Ledger Size and Bolt Spacing for Floors and Decks

Note: All anchor bolts are ASTM A36 or A307.

Table 3 – Soil Classifications

Types of Soils and Engineering Characteristics											
Soil Group	Unified Soil Classification Symbol	Soil Description	Drainage Characteristics	Frost Heave Susceptibility	Bearing Capacity kPa (psf)	Design Lateral Soil Load kg/m ³ (pcf)					
	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	Good	Low	150 (3000)	480 (30)					
Group I	GP	Poorly graded gravels, gravel-sand mixtures, little or no fines	Good	Low	150 (3000)	480 (30)					
	SW	Well-graded sands, gravelly sands, little or no fines	Good	Low	100 (2000)	480 (30)					
	SP	Poorly graded sands, gravelly sands, little or no fines	Good	Low	100 (2000)	480 (30)					
	GM	Silty gravels, gravel- sand-silt mixtures	Good	Medium	100 (2000)	720 (45)					
	SM	Silty sand, sand-silt mixtures	Good	Medium	100 (2000)	720 (45)					
	GC	Clayey gravels, gravel-sand-clay mixtures	Medium	Medium	100 (2000)	720 (45)					
	SC	Clayey sand, sand- clay mixtures	Medium	Medium	100 (2000)	960 (60)					
Group II	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	Medium	High	75 (1500)	960 (60)					
	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium	Medium	75 (1500)	960 (60)					

Note: Refer to NBC 2005 Table 9.4.4.1 and 2006 IRC Tables R401.4.1, R404.4 and R405.1 for additional information.

Reinforcing steel Tables for 150-mm (6") Advantage ICF System

Assumptions used for development of reinforcing tables for above and below grade walls are as follows:

- 1. Maximum floor span: 6.1 m (20 ft); maximum roof span: 12.2 m (40 ft).
- 2. Specified compressive strength of concrete, f'_c at 28 days is 20 MPa (3,000psi).
- 3. Specified yield strength of reinforcement, f_y is 400 MPa (60,000 psi).
- 4. All above grade situations are assumed to be on top of ICF foundation walls.
- 5. Add one vertical rebar 15M at each corner.
- 6. Table 4 below provides recommended US rebar substitutions for SI rebar sizes designated in tables 5 to 7.

Reinfor	cing Steel Bars (SI Units)	Reinforcing Steel Bars (US Units)				
Per Adva	antage Reinforcir	ng Tables	Recommended Substitution				
Metric	Rebar P	roperties	US	Rebar P	roperties		
Bar Size	Diameter	Nom. Mass	Bar Size	Diameter	Nom. Mass		
Designation	mm	kg/m	Designation	mm	kg/m		
10M	11.3	0.785	#4	12.7	0.994		
15M	16.0	1.570	#5	15.9	1.552		
2014		0.055		10.1	0.005		

Table 4 – Recommended US Rebar Size Substitution for Designated SI Rebar Sizes

Wall Height	Backfill Height	Vertical Re	ng, mm (in)	Horizontal Reinforcement Spacing, mm (in)	
m (ft)	m (ft)	Design Lateral S	oil Load Per m (ft) o	of Backfill Height	
		480 kg/m ³ (30 pcf)	720 kg/m ³ (45 pcf)	960 kg/m ³ (60 pcf)	All Soll Types
	1.22 (4.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
2.44	1.52 (5.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
(8.00) 1. (6.	1.83 (6.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
	2.13 (7.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 305 (12)	10M @ 419 (16 ½)
	1.22 (4.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
3.05	1.52 (5.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
	1.83 (6.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 305 (12)	10M @ 419 (16 ½)
(10.00)	2.13 (7.00)	10M @ 406 (16)	10M @ 305 (12)	10M @ 203 (8)	10M @ 419 (16 ½)
	2.44 (8.00)	10M @ 305 (12)	10M @ 203 (8)	15M @ 305 (12)	10M @ 419 (16 ½)
	2.74 (9.00)	10M @ 203 (8)	15M @ 305 (12)	15M @ 203 (8)	10M @ 419 (16 ½)
	-				
	1.22 (4.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
	1.52 (5.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 ½)
	1.83 (6.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 305 (12)	10M @ 419 (16 ½)
3.66	2.13 (7.00)	10M @ 406 (16)	10M @ 305 (12)	10M @ 203 (8)	10M @ 419 (16 ½)
(12.00)	2.44 (8.00)	10M @ 305 (12)	10M @ 203 (8)	15M @ 305 (12)	10M @ 419 (16 ½)
	2.74 (9.00)	10M @ 203 (8)	15M @ 305 (12)	15M @ 203 (8)	10M @ 419 (16 ½)
	3.05 (10.00)	10M @ 203 (8)	15M @ 203 (8)		10M @ 419 (16 ½)
	3.35 (10.00)	15M @ 305 (12)			10M @ 419 (16 ½)

Table 5 – 150 mm (6") Below Grade Laterally Restrained Walls in All Seismic Zones

tes engineering input is required.

Wall	Vertical Reinforceme	ent Spacing, mm (in)	Horizontal Reinforcement Spacing, mm (in)								
Height m (ft)	Sa (0.2) ≤ 0.4	Sa (0.2) > 0.4 ≤1.2	Sa (0.2) ≤ 0.4	Sa (0.2) > 0.4 ≤1.2							
	Single storey concret	te construction support	rting a wood-frame roc	of structure							
2.44 (8.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
3.05 (10.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
3.66 (12.00)	10M @ 203 (8)	10M @ 203 (8)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
Ö	Ground floor concrete construction supporting a second storey wood-frame and wood-frame roof structure										
2.44 (8.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
3.05 (10.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
3.66 (12.00)	10M @ 203 (8)	10M @ 203 (8)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
	Ground floor concre cons	ete construction suppo truction and wood-frai	orting a second storey me roof structure	concrete							
2.44 (8.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
3.05 (10.00)	10M @ 406 (16)	10M @ 406 (16)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							
3.66 (12.00)	10M @ 203 (8)	10M @ 203 (8)	10M @ 419 (16 1/2)	10M @ 419 (16 1/2)							

Table 6 – 150 mm (6") Above Grade Walls (with Brick Veneer), S_a (0.2) \leq 1.2

Figure 2 – Typical Lintel Reinforcement Layout

Table 7a – 210 mm (8 ¼") Deep Lintels – Reinforcement in All Seismic Zones

	Factored Uniformly Distributed Load - kN/m (lb/ft)													
	2 (1	37)	5 (3	342)	10 (685)		15 (1	1027)	20 (1	1370)	25 (1	1712)	30 (2	2055)
Opening Width mm (ft)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)
900 (3 ft)	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-
1500 (5 ft)	1-15M	-	1-15M	-	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-20M	300 (12)
2100 (7 ft)	1-15M	-	1-15M	-	1-15M	300 (12)	1-20M	300 (12)						
2700 (9 ft)	1-15M	-	1-15M	-	1-20M	300 (12)								
3300 (11 ft)	1-15M	-	1-20M	-										
3900 (13 ft)	1-15M	-												
4500 (15 ft)	1-15M	-												
5100 (17 ft)														

Indicates engineering input is required.

1. Tables 7a, 7b and 7c are based on the following assumptions:

Stirrups are fabricated from 10M bars spaced at 100 mm (4") o.c. for Table 7a, 200 mm (8") o.c. for Tables 7b and 300 mm (12") o.c. for Table 7c.

The factored uniformly distributed load includes live and dead loads, not including lintel self weight.

The minimum height of lintel is 210 mm (8 $\frac{1}{4}$ ") for Table 7a, 419 mm (16 $\frac{1}{2}$ ") for table 7b and 629 mm (24 $\frac{3}{4}$ ") for Table 7c. Lintel reinforcing is located in bottom of lintel and projects 600 mm (24") into lintel support on each side.

Table 7b – 419 mm (16 ¹/₂") Deep Lintels – Reinforcement in All Seismic Zones

	Factored Uniformly Distributed Load - kN/m (lb/ft)													
	2 (1	137)	5 (3	342)	10 (685)		15 (1	027)	20 (1	370)	25 (1712)		30 (2055)	
Opening Width mm (ft)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)
900 (3 ft)	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-
1500 (5 ft)	1-15M	-	1-15M	-	1-15M	500 (20)								
2100 (7 ft)	1-15M	-	1-15M	-	1-15M	500 (20)								
2700 (9 ft)	1-15M	-	1-15M	-	1-15M	500 (20)	1-15M	500 (20)	1-15M	500 (20)	1-20M	500 (20)	1-20M	500 (20)
3300 (11 ft)	1-15M	-	1-15M	-	1-15M	500 (20)	1-20M	500 (20)	1-20M	500 (20)				
3900 (13 ft)	1-15M	-	1-15M	-	1-20M	500 (20)								
4500 (15 ft)	1-15M	-	1-15M	-	1-20M	500 (20)								
5100 (17 ft)	1-15M	-	1-20M	-										

Indicates engineering input is required.

Note: If lintels are less than 419 mm (16 $\frac{1}{2}$) deep, see Table 7a.

Table 7c – 629 mm (24 ³/₄") Deep Lintels – Reinforcement in All Seismic Zones

	Factored Uniformly Distributed Load - kN/m (lb/ft)													
	2 (1	137)	5 (3	342)	10 (685)	15 (1027)		20 (1	370)	25 (1	1712)	30 (2	2055)
Opening Width mm (ft)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)
900 (3 ft)	1-20M	-	1-20M	-	1-20M	-	1-20M	-	1-20M	-	1-20M	-	1-20M	-
1500 (5 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
2100 (7 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
2700 (9 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
3300 (11 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
3900 (13 ft)	1-20M	-	1-20M	-	1-20M	700 (28)	1-20M	700 (28)	1-20M	700 (28)				
4500 (15 ft)	1-20M	-	1-20M	-	1-20M	700 (28)	1-20M	700 (28)						
5100 (17 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								

Indicates engineering input is required.

Note: If lintels are less than 629mm (24 ³/₄") deep, see Table 7b.

Reinforcing steel Tables for 200-mm (8") Advantage ICF System

Assumptions used for development of reinforcing tables for above and below grade walls are as follows:

- 1. Maximum floor span: 6.1 m (20 ft); maximum roof span: 12.2 m (40 ft).
- 2. Specified compressive strength of concrete, f'c at 28 days is 20 MPa (3,000psi).
- 3. Specified yield strength of reinforcement, fy is 400 MPa (60,000 psi).
- 4. All above grade situations are assumed to be on top of ICF foundation walls.
- 5. Add one vertical rebar 15M at each corner.
- 6. Table 8 below provides recommended US rebar substitutions for SI rebar sizes designated in tables 9 to 11.

Reinfor Per Adva	cing Steel Bars (S antage Reinforcin	SI Units) Ig Tables	Reinforcing Steel Bars (US Units) Recommended Substitution				
Metric	Rebar P	roperties	US	US Rebar Properties			
Bar Size	Diameter	Nom. Mass	Bar Size	Diameter	Nom. Mass		
Designation	mm	kg/m	Designation	mm	kg/m		
10M	11.3	0.785	#4	12.7	0.994		
15M	16.0	1.570	#5	15.9	1.552		
20M	19.5	2.355	#6	19.1	2.235		

Table 8 - Recommended US Rebar Size Substitution for Designated SI Rebar Sizes

Wall Height	Backfill Height	Vertical Re	ng, mm (in)	Horizontal Reinforcement Spacing, mm (in)	
m (ft)	m (ft)	Design Lateral S	oil Load Per m (ft) o	of Backfill Height	
		480 kg/m ³ (30 pcf)	720 kg/m ³ (45 pcf)	960 kg/m ³ (60 pcf)	All Soll Types
	1.22 (4.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
2.44	1.52 (5.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
(8.00)	1.83 (6.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
	2.13 (7.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
		1			
	1.22 (4.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
	1.52 (5.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
3.05	1.83 (6.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
(10.00)	2.13 (7.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
	2.44 (8.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 457 (18)	15M @ 419 (16 ½)
	2.74 (9.00)	15M @ 610 (24)	15M @ 457 (18)	15M @ 305 (12)	15M @ 419 (16 ½)
	1.22 (4.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
	1.52 (5.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
	1.83 (6.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
3.66	2.13 (7.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 ½)
(12.00)	2.44 (8.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 457 (18)	15M @ 419 (16 ½)
	2.74 (9.00)	15M @ 610 (24)	15M @ 457 (18)	15M @ 305 (12)	15M @ 419 (16 ½)
	3.05 (10.00)	15M @ 610 (24)	15M @ 305 (12)	15M @ 203 (8)	15M @ 419 (16 ½)
	3.35 (10.00)	15M @ 457 (18)	15M @ 305 (12)	15M @ 203 (8)	15M @ 419 (16 ½)

Table 9 – 200 mm (8") Below Grade Laterally Restrained Walls in All Seismic Zones

Wall	Vertical Reinforceme	ent Spacing, mm (in)) Horizontal Reinforcement Spacing, mm (in)							
Height m (ft)	Sa (0.2) ≤ 0.4	Sa (0.2) > 0.4 ≤1.2	Sa (0.2) ≤ 0.4	Sa (0.2) > 0.4 ≤1.2						
	Single storey concret	te construction suppor	rting a wood-frame roo	of structure						
2.44 (8.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
3.05 (10.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
3.66 (12.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
Ground floor concrete construction supporting a second storey wood-frame and wood-frame roof structure										
2.44 (8.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
3.05 (10.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
3.66 (12.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
	Ground floor concre cons	ete construction suppo truction and wood-frar	orting a second storey me roof structure	concrete						
2.44 (8.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
3.05 (10.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						
3.66 (12.00)	15M @ 610 (24)	15M @ 610 (24)	15M @ 419 (16 1/2)	15M @ 419 (16 1/2)						

Table 10 – 200 mm (8") Above Grade Walls (with Brick Veneer), Sa (0.2) \leq 1.2

Figure 3 – Typical Lintel Reinforcement Layout

Lintel Elevation

Table 11a – 210 mm (8 ¼") Deep Lintels – Reinforcement in All Seismic Zones

	Factored Uniformly Distributed Load - kN/m (lb/ft)													
	2 (1	137)	5 (3	342)	10 (685)	15 (1	027)	20 (1	1370)	25 (1	1712)	30 (2055)	
Opening Width mm (ft)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)
900 (3 ft)	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-	1-15M	-
1500 (5 ft)	1-15M	-	1-15M	-	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-15M	300 (12)	1-20M	300 (12)
2100 (7 ft)	1-15M	-	1-15M	-	1-15M	300 (12)	1-20M	300 (12)						
2700 (9 ft)	1-15M	-	1-15M	-	1-20M	300 (12)								
3300 (11 ft)	1-15M	-	1-20M	-										
3900 (13 ft)	1-15M	-												
4500 (15 ft)	1-20M	-												
5100 (17 ft)	1-20M	-												

Indicates engineering input is required.

Tables 11a, 11b and 11c are based on the following assumptions:

- 1. Stirrups are fabricated from 10M bars spaced at 100 mm (4") o.c. for Table 11a, 200 mm (8") o.c. for Tables 11b and 300 mm (12") o.c. for Table 11c.
- 2. The factored uniformly distributed load includes live and dead loads, not including lintel self weight.
- 3. The minimum height of lintel is 210 mm (8 $\frac{1}{4}$ ") for Table 11a, 419 mm (16 $\frac{1}{2}$ ") for table 11b and 629 mm (24 $\frac{3}{4}$ ") for Table 11c.
- 4. Lintel reinforcing is located in bottom of lintel and projects 600 mm (24") into lintel support on each side.

Table 11b – 419 mm (16 ¹/₂") Deep Lintels – Reinforcement in All Seismic Zones

					Factor	red Unifor	mly Distr	ibuted Lo	ad - kN/m	n (lb/ft)				
	2 (1	37)	5 (3	342)	10 (685)	15 (1	027)	20 (1	1370)	25 (1	712)	30 (2055)	
Opening Width mm (ft)	Bottom Steel	Stirrup End Distance mm (in)												
900 (3 ft)	1-15M	-												
1500 (5 ft)	1-15M	-	1-15M	-	1-15M	500 (20)								
2100 (7 ft)	1-15M	-	1-15M	-	1-15M	500 (20)								
2700 (9 ft)	1-15M	-	1-15M	-	1-15M	500 (20)	1-15M	500 (20)	1-15M	500 (20)	1-20M	500 (20)	1-20M	500 (20)
3300 (11 ft)	1-15M	-	1-15M	-	1-15M	500 (20)	1-20M	500 (20)	1-20M	500 (20)				
3900 (13 ft)	1-15M	-	1-15M	-	1-20M	500 (20)								
4500 (15 ft)	1-15M	-	1-15M	-	1-20M	500 (20)								
5100 (17 ft)	1-15M	-	1-20M	-										

Indicates engineering input is required.

Note: If lintels are less than 419mm (16 $\frac{1}{2}$) deep, see Table 11a.

Table 11c – 629 mm (24 ³/₄") Deep Lintels – Reinforcement in All Seismic Zones

	Factored Uniformly Distributed Load - kN/m (lb/ft)													
	2 (1	37)	5 (3	842)	10 (685)	15 (1	027)	20 (1	370)	25 (1	712)	30 (2055)	
Opening Width mm (ft)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)	Bottom Steel	Stirrup End Distance mm (in)
900 (3 ft)	1-20M	-	1-20M	-	1-20M	-	1-20M	-	1-20M	-	1-20M	-	1-20M	-
1500 (5 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
2100 (7 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
2700 (9 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
3300 (11 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								
3900 (13 ft)	1-20M	-	1-20M	-	1-20M	700 (28)	1-20M	700 (28)	1-20M	700 (28)				
4500 (15 ft)	1-20M	-	1-20M	-	1-20M	700 (28)	1-20M	700 (28)						
5100 (17 ft)	1-20M	-	1-20M	-	1-20M	700 (28)								

Indicates engineering input is required.

Note: If lintels are less than 629mm (24 ³/₄") deep, use 629 mm (16 ¹/₂") table 11b.

MINIMUM SOLID WALL LENGTH FOR ADVANTAGE ICF SYSTEM

	Building			١	Wall thick	ness (mm)			
Building			1:	50		200				
width (m)	length (m)	One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
	6.1	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
6 1	12.2	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
0.1	18.3	1.22	1.22	1.26	1.22	1.22	1.22	1.22	1.22	
	24.4	1.22	1.22	1.67	1.22	1.22	1.22	1.26	1.22	
	6.1	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
12.2	12.2	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
12.2	18.3	1.22	1.22	1.53	1.22	1.22	1.22	1.22	1.22	
	24.4	1.39	1.22	2.02	1.22	1.22	1.22	1.53	1.22	

Table 12a – Minimum Solid Wall Length (m) for Wind Pressure q(1/50) = 0.4 kPa

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

3. Concrete compressive strength is 20 Mpa.

4. Reinforcement yield strength is 400 Mpa.

Table T2D = Withinfully Outly Wall Length (III) for With Tressure $q(1/50) = 0.0$ Kr a
--

	Duilding			١	Nall thick	ness (mm)			
Building			1:	50		200				
width (m)	length (m)	One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
	6.1	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
6 1	12.2	1.22	1.22	1.26	1.22	1.22	1.22	1.22	1.22	
0.1	18.3	1.22	1.22	1.87	1.22	1.22	1.22	1.41	1.22	
	24.4	1.53	1.22	2.48	1.22	1.22	1.22	1.87	1.22	
	6.1	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
10.0	12.2	1.22	1.22	1.53	1.22	1.22	1.22	1.22	1.22	
12.2	18.3	1.55	1.22	2.27	1.22	1.22	1.22	1.71	1.22	
-	24.4	2.06	1.22	3.01	1.22	1.55	1.22	2.27	1.22	

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

- 3. Concrete compressive strength is 20 Mpa.
- 4. Reinforcement yield strength is 400 Mpa.

	Ruilding			١	Nall thick	ness (mm)			
Building			1:	50		200				
width (m)	length (m)	One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
	6.1	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
6 1	12.2	1.22	1.22	1.67	1.22	1.22	1.22	1.26	1.22	
0.1	18.3	1.53	1.22	2.48	1.22	1.22	1.22	1.87	1.22	
	24.4	2.02	1.22	3.30	1.22	1.53	1.22	2.48	1.22	
	6.1	1.22	1.22	1.22	1.34	1.22	1.22	1.22	1.22	
10.0	12.2	1.39	1.22	2.02	1.34	1.22	1.22	1.53	1.22	
12.2	18.3	2.06	1.22	3.01	1.34	1.55	1.22	2.27	1.22	
	24.4	2.73	1.22	4.00	1.34	2.06	1.22	3.01	1.22	

Table 12c – Minimum Solid Wall Length (m) for Wind Pressure q(1/50) = 0.8 kPa

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

3. Concrete compressive strength is 20 Mpa.

4. Reinforcement yield strength is 400 Mpa.

Table 12d – Minimum Solid Wall Length (m) for Wind Pressure q(1/50) = 1.0 kPa

	Building			١	Nall thick	ness (mm)			
Building			15	50		200				
width (m)	length (m)	One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
	6.1	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	
6 1	12.2	1.28	1.22	2.08	1.22	1.22	1.22	1.57	1.22	
0.1	18.3	1.90	1.22	3.09	1.22	1.43	1.22	2.33	1.22	
	24.4	2.52	1.22	4.11	1.22	1.90	1.22	3.09	1.22	
	6.1	1.22	1.22	1.28	1.67	1.22	1.22	1.22	1.26	
10.0	12.2	1.72	1.22	2.52	1.67	1.30	1.22	1.90	1.26	
12.2	18.3	2.56	1.22	3.76	1.67	1.93	1.22	2.83	1.26	
	24.4	3.40	1.22	5.00	1.67	2.56	1.22	3.76	1.26	

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

- 3. Concrete compressive strength is 20 Mpa.
- 4. Reinforcement yield strength is 400 Mpa.

	Ruilding			١	Wall thick	ness (mm)		
Building			1:	50		200			
width (m)	length (m)	One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story	
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave
	6.1	1.22	1.22	1.26	1.22	1.22	1.22	1.22	1.22
6 1	12.2	1.53	1.22	2.48	1.22	1.22	1.22	1.87	1.22
0.1	18.3	2.27	1.22	3.70	1.22	1.71	1.22	2.79	1.22
	24.4	3.01	1.22	4.93	1.22	2.27	1.22	3.70	1.22
	6.1	1.22	1.31	1.53	2.00	1.22	1.22	1.22	1.51
10.0	12.2	2.06	1.31	3.01	2.00	1.55	1.22	2.27	1.51
12.2	18.3	3.07	1.31	4.50	2.00	2.31	1.22	3.39	1.51
	24.4	4.08	1.31	5.99	2.00	3.07	1.22	4.50	1.51

Table 12e – Minimum Solid Wall Length (m) for Wind Pressure q(1/50) = 1.2 kPa

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

3. Concrete compressive strength is 20 Mpa.

4. Reinforcement yield strength is 400 Mpa.

	-			١	Wall thick	ness (mm)				
Building	Duilding		15	50		200					
width (m)	length (m)	One sto story of t	ry or top wo-story	First s ⊦two	First story of two-story		ry or top wo-story	First story of two-story			
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave		
	6.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
6 1	12.2	1.2	1.2	1.8	1.9	1.2	1.2	1.6	1.7		
0.1	18.3	1.2	1.2	2.4	2.6	1.2	1.2	2.0	2.3		
	24.4	1.2	1.5	2.9	3.3	1.2	1.4	2.5	2.9		
	6.1	1.2	1.2	1.9	1.8	1.2	1.2	1.7	1.6		
10.0	12.2	1.2	1.2	2.5	2.5	1.2	1.2	2.2	2.2		
12.2	18.3	1.4	1.6	3.1	3.2	1.3	1.4	2.7	2.8		
	24.4	1.6	1.9	3.7	3.9	1.5	1.7	3.2	3.4		

Table 13a – Minimum Solid Wall Length (m) for Spectral Acceleration S_a(0.2) = 0.4

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

- 3. Concrete compressive strength is 20 Mpa.
- 4. Reinforcement yield strength is 400 Mpa.
- 5. Seismic effects for Site Class C are considered
- 6. Brick veneer of maximum 7.32 m (24 ft) high is included.

Table 13b – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 0.6$

Building width (m)	Building length (m)	Wall thickness (mm)								
			1:	50		200				
		One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
6.1	6.1	1.2	1.2	1.8	1.8	1.2	1.2	1.6	1.6	
	12.2	1.2	1.3	2.7	2.8	1.2	1.2	2.3	2.5	
	18.3	1.4	1.8	3.5	3.9	1.2	1.6	3.0	3.4	
	24.4	1.7	2.3	4.4	5.0	1.5	2.0	3.8	4.3	
12.2	6.1	1.6	1.4	2.9	2.7	1.4	1.2	2.6	2.4	
	12.2	1.8	1.8	3.8	3.8	1.7	1.7	3.3	3.3	
	18.3	2.1	2.3	4.6	4.8	1.9	2.1	4.1	4.2	
	24.4	2.4	2.8	5.5	5.9	2.2	2.5	4.8	5.1	

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

- 2. Storey height is maximum 3.66 m (12 ft) for each floor.
- 3. Concrete compressive strength is 20 Mpa.
- 4. Reinforcement yield strength is 400 Mpa.
- 5. Seismic effects for Site Class C are considered
- 6. Brick veneer of maximum 7.32 m (24 ft) high is included.

Building width (m)	Building length (m)	Wall thickness (mm)								
			1:	50		200				
		One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
6.1	6.1	1.2	1.2	2.4	2.4	1.2	1.2	2.1	2.1	
	12.2	1.5	1.7	3.5	3.8	1.3	1.5	3.1	3.3	
	18.3	1.9	2.4	4.7	5.2	1.6	2.1	4.0	4.5	
	24.4	2.3	3.0	5.8	6.6	2.0	2.7	5.0	5.7	
12.2	6.1	2.1	1.8	3.9	3.6	1.9	1.6	3.4	3.2	
	12.2	2.5	2.5	5.0	5.0	2.2	2.2	4.4	4.4	
	18.3	2.8	3.1	6.2	6.4	2.5	2.8	5.4	5.6	
	24.4	3.2	3.7	7.3	7.8	2.9	3.3	6.4	6.8	

Table 13c – Minimum Solid Wall Length (m) for Spectral Acceleration S_a(0.2) = 0.8

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

- 3. Concrete compressive strength is 20 Mpa.
- 4. Reinforcement yield strength is 400 Mpa.
- 5. Seismic effects for Site Class C are considered
- 6. Brick veneer of maximum 7.32 m (24 ft) high is included.

Table 13d – Minimum Solid Wall Length (m) for Spectral Acceleration S_a(0.2) = 1.0

Building width (m)	Building length (m)	Wall thickness (mm)								
		150				200				
		One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
6.1	6.1	1.4	1.4	3.0	3.0	1.2	1.2	2.6	2.6	
	12.2	1.8	2.2	4.4	4.7	1.6	1.9	3.8	4.1	
	18.3	2.3	3.0	5.8	6.5	2.0	2.6	5.0	5.6	
	24.4	2.8	3.8	7.3	8.2	2.5	3.3	6.3	7.1	
12.2	6.1	2.6	2.2	4.8	4.5	2.3	2.0	4.3	4.0	
	12.2	3.1	3.1	6.2	6.2	2.7	2.7	5.5	5.5	
	18.3	3.5	3.9	7.7	8.0	3.2	3.4	6.7	7.0	
	24.4	4.0	4.7	9.1	9.8	3.6	4.2	8.0	8.5	

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

- 2. Storey height is maximum 3.66 m (12 ft) for each floor.
- 3. Concrete compressive strength is 20 Mpa.
- 4. Reinforcement yield strength is 400 Mpa.
- 5. Seismic effects for Site Class C are considered
- 6. Brick veneer of maximum 7.32 m (24 ft) high is included.

Building width (m)	Building length (m)	Wall thickness (mm)								
			1	50		200				
		One story or top story of two-story		First story of two-story		One story or top story of two-story		First story of two-story		
		Gable	Eave	Gable	Eave	Gable	Eave	Gable	Eave	
6.1	6.1	1.6	1.6	3.5	3.5	1.4	1.4	3.1	3.1	
	12.2	2.2	2.6	5.3	5.7	1.9	2.3	4.6	4.9	
	18.3	2.8	3.6	7.0	7.8	2.4	3.1	6.0	6.7	
	24.4	3.4	4.5	8.7	9.9	2.9	4.0	7.5	8.6	
12.2	6.1	3.1	2.7	5.8	5.4	2.8	2.4	5.1	4.8	
	12.2	3.7	3.7	7.5	7.5	3.3	3.3	6.6	6.6	
	18.3	4.2	4.6	9.2	9.6	3.8	4.1	8.1	8.4	
	24.4	4.8	5.6	10.9	11.7	4.3	5.0	9.5	10.2	

Table 13e – Minimum Solid Wall Length (m) for Spectral Acceleration $S_a(0.2) = 1.2$

Notes: 1. The minimum solid wall length is for each side and roof slope is up to 1:1.

2. Storey height is maximum 3.66 m (12 ft) for each floor.

3. Concrete compressive strength is 20 Mpa.

4. Reinforcement yield strength is 400 Mpa.

5. Seismic effects for Site Class C are considered

6. Brick veneer of maximum 7.32 m (24 ft) high is included.

Advantage ICF System Specifications

General Product Description

	En Pre-					
Advantage ICF System Specifications						
General Product Description	E					
EPS Insulation:	Complies with CAN/ULC-S701, Type 2 and ASTM C578, Type II Contains no CFCs, HCFCs, HFCs or formaldehyde. ECP-Certified Insulation					
Concrete:	20 MPa (2900 psi) at 28 days Nominal thickness 152-mm (6") or 203-mm (8")					
Sound Transmission:	STC Rating 50					
Fire Resistance Rating:	3-hour rating for 152-mm (6") or 4-hour 203-mm (8") concrete wall per National Building Code of Canada 2005, Table D-2.1.1.					
Air & Vapour Barrier:	Provided by combination of monolithic concrete thickness and EPS insulation.					
Code Evaluation Reports:	CCMC 13101-R (Canada) and ICC-ES ESR-1578 (USA)					

Energy Efficiency - Typical Effective Thermal Resistance (R-Value):

Advantage ICF System @ R-22.7 (RSI - 3.99) **Below Grade:** Note: R-Value based upon typical construction with 1/2" (127 mm) gypsum board on interior face.

Advantage ICF System @ R-23.5 (RSI - 4.14) Above Grade: Note: R-Value based upon typical construction with 1/2" (127 mm) gypsum board on interior face and vinyl or metal siding on exterior face.

Contact Information

Contact Plasti-Fab® Ltd. Tel: 1 888 446 5377 www.advantageicf.com

Copyright © 2009 by Plasti-Fab Ltd. All rights reserved. Plasti-Fab, PlastiSpan and Advantage ICF System are registered trademarks of Plasti-Fab Ltd. Printed in Canada. AICF 11/09

